Inscribing a circle in a hypercube

Maris Ozols

January 8, 2009

Problem. What is the radius of the largest (2-dimensional) circle that can be inscribed in n-dimensional hypercube whose edges have unit length?

Without loss of generality we assume that the hypercube is centered at the origin and the coordinates of its vertices are $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \ldots, \pm \frac{1}{2}\right)$. Then the set of points H_{n} that belong to the hypercube is

$$
\begin{equation*}
H_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \left\lvert\,-\frac{1}{2} \leq x_{i} \leq \frac{1}{2}\right.\right\} \tag{1}
\end{equation*}
$$

Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, and assume that

$$
\begin{equation*}
\|\mathbf{x}\|=\|\mathbf{y}\|=r \quad \text { and } \quad \mathbf{x} \cdot \mathbf{y}=0 \tag{2}
\end{equation*}
$$

A circle $C_{\mathbf{x}, \mathbf{y}}$ of radius r that is centered at the origin and belongs to the plane spanned by \mathbf{x} and \mathbf{y} is the following set of points:

$$
\begin{equation*}
C_{\mathbf{x}, \mathbf{y}}=\{\mathbf{x} \cos \alpha+\mathbf{y} \sin \alpha \mid 0 \leq \alpha<2 \pi\} . \tag{3}
\end{equation*}
$$

The condition $C_{\mathbf{x}, \mathbf{y}} \subset H_{n}$ is equivalent to

$$
\begin{equation*}
\forall \alpha \in \mathbb{R}, \forall i \in\{1, \ldots, n\}:\left|x_{i} \cos \alpha+y_{i} \sin \alpha\right| \leq \frac{1}{2} \tag{4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\max _{\alpha \in \mathbb{R}}|x \cos \alpha+y \sin \alpha|=\sqrt{x^{2}+y^{2}} \tag{5}
\end{equation*}
$$

since $x \cos \alpha+y \sin \alpha$ is the first component of

$$
\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \tag{6}\\
-\sin \alpha & \cos \alpha
\end{array}\right)\binom{x}{y}
$$

which is just $\binom{x}{y}$ rotated clockwise by angle α. Thus we can eliminate α from condition (4) and rewrite it as follows:

$$
\begin{equation*}
\forall i \in\{1, \ldots, n\}: x_{i}^{2}+y_{i}^{2} \leq \frac{1}{4} \tag{7}
\end{equation*}
$$

Now we can state the problem of finding the largest circle inscribed in the hypercube as the following optimization problem:

$$
\begin{array}{ll}
\text { maximize } r \text { subject to : } & \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} y_{i}^{2}=r^{2} \\
& \sum_{i=1}^{n} x_{i} y_{i}=0 \\
& x_{i}^{2}+y_{i}^{2} \leq \frac{1}{4}, \forall i \in\{1, \ldots, n\} . \tag{10}
\end{array}
$$

From (8) and (10) we get

$$
\begin{equation*}
\sum_{i=1}^{n}\left(x_{i}^{2}+y_{i}^{2}\right)=2 r^{2} \leq \frac{n}{4} \tag{11}
\end{equation*}
$$

which gives us an upper bound on r :

$$
\begin{equation*}
r \leq \sqrt{\frac{n}{8}} \tag{12}
\end{equation*}
$$

It remains to show that this upper bound can be achieved for all $n \geq 2$.
To achieve the upper bound, all inequalities in (10) must be saturated. Thus the optimality conditions read:

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} y_{i}^{2}, \quad \sum_{i=1}^{n} x_{i} y_{i}=0, \quad x_{i}^{2}+y_{i}^{2}=\frac{1}{4}, \forall i \in\{1, \ldots, n\} \tag{13}
\end{equation*}
$$

When $n \geq 2$ is even, we can use the following two vectors to satisfy (13):

$$
\binom{\mathbf{x}}{\mathbf{y}}=\left(\begin{array}{cccccc}
\frac{1}{2} & \ldots & \frac{1}{2} & 0 & \ldots & 0 \tag{14}\\
0 & \ldots & 0 & \frac{1}{2} & \ldots & \frac{1}{2}
\end{array}\right) .
$$

One can also directly see that $C_{\mathbf{x}, \mathbf{y}} \subset H_{n}$ holds in this case.
When $n \geq 3$ is odd, we use

$$
\binom{\mathbf{x}}{\mathbf{y}}=\left(\begin{array}{ccccccccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & \ldots & \frac{1}{2} & 0 & \ldots & 0 \tag{15}\\
0 & \frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} & 0 & \ldots & 0 & \frac{1}{2} & \ldots & \frac{1}{2}
\end{array}\right) .
$$

It is interesting and counter-intuitive that r can get arbitrarily large, when n increases. In particular, $r>1$ when $n>8$.

Note: We have not justified the assumption that the largest circle is centered at the origin. This assumption seems reasonable. However, one still has to rule out the possibility that a larger circle, not centered at the origin, can be found.

